

RigiSystems AG
Bundesstrasse 3
CH-6300 Zug
Switzerland
+41 41 712 10 44

Version: 1.0 – 16

vTuner API
Reference Implementation

SRS

Testcases

System Requirement Specification

System Test Definitions

Copyright Apr-07 by RigiSystems AG, Zug, Switzerland. All rights reserved. Reproduction of part or all of the
contents in any form is expressly prohibited without the prior written consent of RigiSystems AG.

RigiSystems AG has used its discretion, best judgments and efforts in preparing this document. Any information
contained in this document is provided as is, without warranty of correctness or fitness for any particular purpose.
RigiSystems AG may make improvements and/or changes of this document at any time, without prior notice.

vTuner API reference implementation SRS

RigiSystems AG ii

Contents

1 Scope .. 4
1.1 Identification .. 4
1.2 System Overview .. 4

2 Referenced Documents .. 6
2.1 References .. 6

3 Requirements .. 7
3.1 Global Requirements .. 7

4 API documentation ... 8
4.1 Overview ... 8
4.2 Initialization ... 8
4.3 Internal Data Structure .. 9
4.4 Access Data .. 13
4.5 Browsing ... 13
4.6 Caching ... 13
4.7 Preload pages ... 14
4.8 Bookmarks .. 14
4.9 Configuration ... 14
4.10 Error Codes ... 15

5 Project file structure ... 16
5.1 The projects public interface ... 16
5.2 The projects source files ... 17

6 Sample Application ... 18

7 Test procedure .. 20
7.1 Login procedure .. 20
7.2 Browse Directories and Previous item .. 20
7.3 Browse Items .. 21

7.3.1 Stations .. 21
7.3.2 Show on Demand .. 21
7.3.3 Show Episode .. 22
7.3.4 Display Item ... 22
7.3.5 Search item ... 22
7.3.6 Weather ... 22
7.3.7 RSS Feeds .. 22

7.4 Bookmark .. 22
7.5 Paging ... 23

vTuner API reference implementation SRS

RigiSystems AG iii

7.6 Cache .. 23
7.7 Wrong parameters in calls to API functions .. 24
7.8 Backup server URL operation ... 24

7.9 Token expiration ... 25
7.10 Languages support ... 25
7.11 Exhaustive browsing ... 25
7.12 Memory usage control .. 26

7.13 Search test .. 26
7.14 Test Expire .. 27
7.15 Test Domain .. 27
7.16 Test Path ... 27

7.17 Test Local US ... 28
7.18 URL Length Test ... 28
7.19 No Data Returned Test ... 28

8 Memory tracking tool .. 29
8.1 Changes to vTuner_malloc / vTuner_free() .. 29

vTuner API reference implementation SRS

RigiSystems AG 4

1 Scope

1.1 Identification

Version Name, Date Comments

1.0 – 01 RSr, 2008-05-28 First draft, API suggestion

1.0 – 02 RSr, 2008-06-03 Added Datastructure. ResultSet modified completely

1.0 – 03 RSr, 2008-06-05 BackupURL added to datastructures, cache and
bookmark specification added.

1.0 – 04 RSr, 2008-06-06 Added projects file structures

1.0 – 05 RSr, 2008-06-16 Adjusted requirements regarding the XML parser and the
http client.

1.0 – 06 RSr, 2008-06-16 Added reference application

1.0 – 07 AY, 2008-07-11 Added bunch of test cases

1.0 – 08 AY, 2008-07-12 Minor modification of few test cases description

1.0 – 09 YK, 2008-07-21 Changed the output of mtrack command.

1.0 – 10 YK, 2008-07-22 Added vTuner_getLastItem() function

1.0 – 11 AY, 2008-07-22 Added search testcase

1.0 – 12 AY, 2008-07-22 Modified description of language support test according
to realities of its operation.

1.0 – 13 AY, 2008-07-23 Modified test cases section.

1.0 – 14 AY, 2008-07-24 Modified some test cases. Added test directory structure.

1.0 – 15 AY, 2008-07-25 Added few test cases description.

1.0 – 16 RSr, 2008-11-12 Adjusted test case description to match with vTuner test
directory

Table 1: Document History

1.2 System Overview

The target of the vTuner Reference API is to have a reference implementation, which is easily
portable to any C / C++ application.

A reference application is built to show the usage of the API as an example implementation.

vTuner API reference implementation SRS

RigiSystems AG 5

Figure 1: Overview

vTuner API reference implementation SRS

RigiSystems AG 6

2 Referenced Documents

2.1 References

[1] vTuner API Specification:

\\rigi\pub\Customers\vTuner\documentation\vTuner API Generic Rev 5_7B.pdf

[2] “expat” XML parser

http://expat.sourceforge.net/

[3] “curl” HTTP client

http://curl.haxx.se/

vTuner API reference implementation SRS

RigiSystems AG 7

3 Requirements

3.1 Global Requirements

Implementation must be held in pure ANSI C, only predefined
datatypes must be used (uint8, uint16, uint32, sint8, sint16, sint32), to
maximize portability to different architectures.

R(1)

Must be possible to configure the build regarding memory
consumption. The result list can hold maximum or minimum needed
information. That needs to be selectable through configuration

R(2)

The module shall provide cache functionality. Need for a mechanism
to avoid non cacheable pages!

R(3)

Uses standard BSD functions for network access R(4)

For XML-Parsing “Expat” is shipped along with the vTuner library. This
is free software under the MIT license. The user can register his own
XML parser to keep the memory consumption low.

R(5)

Dynamic memory can be used. A “vT_malloc()” shall be offered in the
header file which can be implemented by the user.

R(6)

As http client “CURL” is shipped along with the vTuner library. This is
free software under the MIT license. The user can register his own
httpClient so keep the memory consumption low.

R(7)

If a proprietary OS (not windows or Linux based) is used, the user is
self responsible to port CURL onto his system. CURL requires BSD
socket functions to be ported.

R(8)

Shell based test/reference application must be included in the
shipment

R(9)

vTuner API reference implementation SRS

RigiSystems AG 8

4 API documentation

4.1 Overview

There are 4 API calls which result in a HTTP Get() request: browseDirectory, browseOnDemand,

browsePrevious and search. The resulting XML is put into the XML parser, which is responsible to fill up

the data into the internal datastructure. When the parsing is finished, a previously registered

callbackfunction (data_ready) is called, passing a handler as argument. This handler must be passed as

first argument to all the data access functions.

4.2 Initialization

Before the vTuner database can be browsed, the module needs to be initialized. This happens by calling

the following API function:

uint8 vTuner_initialize(uint8* cPrimaryURL,

 uint8* cBackupURL,

 uint8* cMACAddress,

 uint8* cBlowfishKey,

 uint8* cBlowfishIV,

 uint8* cLanguageCode,

 uint8 (*result_ready)(struct directory_handle*));

This function takes the primary and backup URL which shall be used for browsing requests. The MAC

address is taken as well as the Blowfish key credentials. As last parameter, a function pointer to the

result_ready function is passed and registered in the vTuner module.

vTuner API reference implementation SRS

RigiSystems AG 9

The function then requests a session token from vTunerServer, and creates the login credentials based on

the retrieved session token and the blowfish parameters.

See chapter Error Codes for definition of the return values.

4.3 Internal Data Structure

The main task of the vTuner module is to fill up a data structure with the data, which is provided by the

XML structure. API access functions are defined to browse these internal data structures.

For each directory a handler is assigned, which is equivalent with the pointer to the structure that

describes that directory. From there, there is a pointer to a double linked list, which provides data access

to the individual pages within a directory level. If paging isn’t used, there is only one page.

The page structure contains a pointer to an arrays of pointers, each pointing to an item structure.

vTuner API reference implementation SRS

RigiSystems AG 10

struct bookmark_item

{

 uint8 *pBookmarkURL;

 uint8 *pBookmarkURLBackup;

};

struct generic_item

{

 struct generic_item *pNext;

 struct generic_item *pPrev;

 uint8 iItemType;

 uint8 cDisplayName[SHORT_TEXT_LENGTH];

 void *pItem;

};

vTuner API reference implementation SRS

RigiSystems AG 11

struct station_item

{

 uint8 cStationID[MIME_TYPE_LENGTH];

 uint8 cStationName[STATIONNAME_LENGTH];

 uint8 *pStationURL;

 uint8 *pStationDescription;

 uint8 cStationFormat[SHORT_TEXT_LENGTH];

 uint8 cStationLocation[SHORT_TEXT_LENGTH];

 uint8 cStationBandwidth[MIME_TYPE_LENGTH];

 uint8 cStationMimeType[MIME_TYPE_LENGTH];

 uint8 cStationLanguage[SHORT_TEXT_LENGTH];

 uint8 cStationCity[SHORT_TEXT_LENGTH];

 uint8 cStationState[SHORT_TEXT_LENGTH];

 uint8 cStationZIP[SHORT_TEXT_LENGTH];

 uint8 cStationCountry[SHORT_TEXT_LENGTH];

 uint8 cStationTimezone[MIME_TYPE_LENGTH];

 uint8 cStationBroadcast[SHORT_TEXT_LENGTH];

 uint8 cStationFrequency[SHORT_TEXT_LENGTH];

 uint8 cStationBand[SHORT_TEXT_LENGTH];

 uint8 cStationReliability[MIME_TYPE_LENGTH];

 uint8 cStationSoundQuality[MIME_TYPE_LENGTH];

 uint8 *pStationHomeURL;

 uint8 *pStationLogoURL;

 struct bookmark_item sStationBookmark;

};

struct directory_item

{

 uint8 cDirectoryTitle[DIRNAME_LENGTH] ;

 uint8 *pDirectoryURL;

 uint8 *pDirectoryURLBackup;

};

struct showondemand_item

{

 uint8 cShowOnDemandID[MIME_TYPE_LENGTH];

 uint8 cShowOnDemandName[SHOWONDEMAND_LENGTH];

 uint8 *pShowOnDemandURL;

 uint8 *pShowOnDemandURLBackup;

 struct bookmark_item sShowOnDemandBookmark;

};

struct episode_item

{

 uint8 cEpisodeID[SHORT_TEXT_LENGTH];

 uint8 cEpisodeName[STATIONNAME_LENGTH];

 uint8 *pEpisodeDescription;

 uint8 *pEpisodeURL;

 uint8 *pShowDescription;

 uint8 cShowFormat[SHORT_TEXT_LENGTH];

 uint8 cShowMimetype[SHORT_TEXT_LENGTH];

 uint8 cShowLanguage[SHORT_TEXT_LENGTH];

 uint8 cShowCity[SHORT_TEXT_LENGTH];

 uint8 cShowState[SHORT_TEXT_LENGTH];

 uint8 cShowCountry[SHORT_TEXT_LENGTH];

 uint8 *pShowLogoURL;

 struct bookmark_item sShowBookmark;

};

struct display_item

{

 uint8 *pDisplayText;

};

vTuner API reference implementation SRS

RigiSystems AG 12

struct search_item

{

 uint8 *pSearchURL;

 uint8 *pSearchURLBackup;

 uint8 cSearchCaption[SHORT_TEXT_LENGTH];

 uint8 cSearchTextbox[SHORT_TEXT_LENGTH];

 uint8 cSearchButton[SHORT_TEXT_LENGTH];

 uint8 cSearchCancel[SHORT_TEXT_LENGTH];

};

struct weather_item

{

 uint8 cWeatherID[SHORT_TEXT_LENGTH];

 uint8 cWeatherDayName[SHORT_TEXT_LENGTH];

 uint8 cWeatherForecast[SHORT_TEXT_LENGTH];

 uint8 cWeatherTempCurrent[SHORT_TEXT_LENGTH];

 uint8 cWeatherTempApparent[SHORT_TEXT_LENGTH];

 uint8 cWeatherTempFeel[SHORT_TEXT_LENGTH];

 uint8 cWeatherHumidity[SHORT_TEXT_LENGTH];

 uint8 cWeatherWindDirection[SHORT_TEXT_LENGTH];

 uint8 cWeatherWindSpeed[SHORT_TEXT_LENGTH];

 uint8 cWeatherPressure[SHORT_TEXT_LENGTH];

 uint8 cWeatherVisibility[SHORT_TEXT_LENGTH];

 uint8 *pWeatherLogo;

};

struct rss_item

{

 uint8 cRssID[SHORT_TEXT_LENGTH];

 uint8 cRssTitle[SHORT_TEXT_LENGTH];

 uint8 cRssDescription[LONG_TEXT_LENGTH];

 uint8 *pRssLink;

};

struct previous_item

{

 uint8 *pPreviousURL;

 uint8 *pPreviousURLBackup;

};

struct page_data

{

 struct page_data *pNext;

 struct page_data *pPrev;

 uint16 iNrOfItems;

 uint16 iFirstItemIndex;

 uint16 iLastItemIndex;

 struct generic_item *pItemList; /* pointer to the first item in the list */

 struct generic_item *pCurrentGenericItem; /* pointer to the current item in the list */

};

struct directory_handle

{

 struct page_data *pFirstPage;

 struct page_data *pCurrentBrowsingPage;

 int16 iNumberOfItems;

 struct previous_item *pPreviousItem; /* Browse previous without cache */

 struct search_item *pSearchItem;

 struct directory_handle *pPrevious; /* For cache purpose. Must be 0 if */

 /* “NoCache” flag is set!*/

};

vTuner API reference implementation SRS

RigiSystems AG 13

struct cache_item

{

 struct cache_item *pNext;

 struct directory_handle *pHandle;

 uint8 *pURL;

};

struct cache_list

{

 struct cache_item *pCacheList;

};

NOTE: This lists might become extremely large if the configuration is set to gather all possible

information out of the XML! The user of the vTuner interface is self responsible to set the

configuration in a way that the memory retrictions of the system are not exceeded.

4.4 Access Data

Along with the callback function uint8 (*result_ready)(struct directory_handle*), the user gets a

pointer to the directory handler.

A couple of functions is defined to access the data, and perform new requests to the server as required

(accessing data outside the pages).

uint16 vTuner_getNumberOfItems(struct directory_handle*);

struct generic_item* vTuner_getFirstItem(struct directory_handle*);

struct generic_item* vTuner_getLastItem(struct directory_handle*);

struct generic_item* vTuner_getNextItem(struct directory_handle*);

struct generic_item* vTuner_getPrevItem(struct directory_handle*);

struct generic_item* vTuner_getItem(struct directory_handle*, uint16 iIndex);

struct search_item* vTuner_getSearchItem(struct directory_handle*);

struct previous_item* vTuner_getPreviousDirectoryItem(struct directory_handle*);

4.5 Browsing

To browse the vTuner database one of the following API functions can be invoked:

uint8 vTuner_browseDirectory(struct directory_item *pDirItem);

uint8 vTuner_browseShowOnDemand(struct showondemand_item *pShowItem);

uint8 vTuner_browsePrevious(struct previous_item *pPreviousItem);

uint8 vTuner_search(struct search_item *pSearchItem,

 uint8 *cSearchString,

 uint8 *iSearchType);

4.6 Caching

Caching happens automatically for pages within a directory. Furthermore, a cache list is provided that

maps directory_handlers to URLs. Each browser request checks for presence in the cache list. If en entry

vTuner API reference implementation SRS

RigiSystems AG 14

exist, the corresponding directory_handler is passed to the application through data_ready() callback. The

application therefore immediately can access the data.

Special care must be given to the NoCache flag, which can be present in each of the XML files. If that

flag is set to “YES”, the cache should be deleted when browsing to the previous directory.

The API function:

uint8 vTuner_emptyCache();

can be used for that.

4.7 Preload pages

If paging is used, the system shall preload the pages in the background, while the user browses the first

page, in order to keep the browsing smooth. The first page can have a different number of items to be

loaded than the following pages, so the initial feedback is very fast. The following pages can be loaded

while the user is browsing the first few items.

4.8 Bookmarks

vTuner provides a way to store stations or episodes into a favourites directory. The API function for this

is:

uint8 vTuner_bookmark(struct bookmark_item *pBookmark);

After that call, data_ready() will be called, which serves an answer to the request.

4.9 Configuration

The behaviour of the implementation can be configured to a certain extend. The following two functions

are used to get and set the configuration parameters.

struct struct_configuration* vTuner_getConfiguration();

uint8 vTuner_setConfiguration(struct struct_configuration*);

struct struct_configuration

{

 uint16 iItemsPerPage;

 uint16 iItemsOnFirstPage;

 uint16 iLocationCode; /* To get weather information */

 uint16 iLanguageCode;

 uint16 iParseWeather; /* Switch On/Off */

 uint16 iParseRssFeeds; /* Switch On/Off */

 uint16 iUseCache; /* Switch On/Off */

};

vTuner API reference implementation SRS

RigiSystems AG 15

4.10 Error Codes

All API functions return either a pointer to a data-structure, or an integer that indicates the success or

failure of the action. Also the ResultSet carries en iErrorCode which can be checked for actual

status of the last browse action. The error numbers are defined here:

enum return_value

{

 vTuner_OK = 0,

 vTuner_NotDefinedError = -1,

 vTuner_NoConnection = -2,

 vTuner_LoginFailed = -3,

 vTuner_BrowseCommandInProgress = -4,

 vTuner_NoAnswerFromServer = -5

};

vTuner API reference implementation SRS

RigiSystems AG 16

5 Project file structure

5.1 The projects public interface

The public interface is reflected by the header files within \include directory.

File Description

vTuner_api.h Contains all functions, defined in this SRS

vTuner_structs.h Contains the modules specific structs, defined in this API

|

+vTunerLib

| |

| +include

 | |

 | +vTuner_api.h

 | +vTuner_structs.h

 | +vTuner_port.h

 | +vTuner_http_client.h

 | +vTuner_xml_parser.h

 |

 +source

 | |

 | +vTuner_api.c

 | +vTuner_api_data_access.c

 | +vTuner_blowfish.h

 | +vTuner_blowfish.c

 | +vTuner_http_client.c

 | +vTuner_xml_parser.c

 | +vTuner_global.h

 | +vTuner_global.c

 |

 +makefile

 +vTunerAPI.sln

vTuner API reference implementation SRS

RigiSystems AG 17

vTuner_port.h Defines the datatypes, used by the vTuner lib module. Needs to

be adjusted for different Architectures

vTuner_http_client.h Abstraction of a general http_client interface. Not defined yet!

The user of the lib needs to implement the glue logic between

this interface to the actual httpClient he’s using within

vTuner_http_client.c in the sources.

vTuner_xml_parser.h Abstraction of a general xml_parser interface. Not defined yet!

vTuner_xml_parser.c will implement this interface with

the modules internal XML parser. The user could exchange this

implementation by his own XML parser he might already be

using in his project

5.2 The projects source files

The \source directory reflectes an internal structure of library.

File Description

vTuner_api.c Implement the public library interface which is defined in the

vTuner_api.h header file.

vTuner_api_data_access.c Implement data access part of library API.

vTuner_blowfish.h Defines the encrypt/decrypt functions of blowfish algorithm

which are implemented in the vTuner_blowfish.c file.

vTuner_blowfish.c Implement the encrypt/decrypt functions of blowfish algorithm

which will be used in the login process.

vTuner_global.h Export global variables.

vTuner_global.c Defines global variables.

vTuner_http_client.c Implement the interface to the actual httpClient. The User have

to register the http_get function to be called by library while

performing the request.

vTuner_xml_parser.c Implement the interface to the actual XML parser and the

internal XML parser.

Makefile Implement the library build rules under the different platform.

vTunerAPI.sln MS VS Solution file.

vTuner API reference implementation SRS

RigiSystems AG 18

6 Sample Application

To check the functionality of the API functions and to give the customer a reference implementation of

how the vTuner API shall be used, a shell based test application is provided alogn with the library.

The application implements following commands:

- help

Prints out help screen containing list of commands and their short description.

- login <predefined number>

Login to a certain vTuner library. “login” without an argument lists the predefined vTuner URLs,

when called with a number, the login procedure for the respective set is executed.

- up, down, right, left

To browse the actual database

- bookmark

Executes the command bookmark to the server.

- page

Prints current page contents. It is not necessary to write whole command. Simply pressing “p” key

executes this command.

- current

Prints currently selected item. It is not necessary to write full command. Simply pressing “c” key executes

this command.

- libverbose <0/1>

Selectes verbosity level of the library. Currently levels 0 and 1 supported (1 is more verbose, 0 is less

verbose). Instead of typing full command user can simply type lv <0/1>

- appverbose <0/1>

Selectes verbosity level of the test application. Currently levels 0 and 1 supported (1 is more verbose, 0 is

less verbose). Instead of typing full command user can simply type av <0/1>

- ls

Lists the complete content of this directory

- lang <three letter language code>

Selectes language for the library http requests.

vTuner API reference implementation SRS

RigiSystems AG 19

- search <single word to search for>

This command performs search for the specified word. Please note, you can search only in the folder that

allow to do that. (i.e. Root folder, or Root/Test/Test Search folder)

- mtrack dump <nr nr>

This command aids in memory leaks tracking.

- quit

Exits test application.

Exits test application. When application is compiled in debug configuration additionally to specified

above it has following commands:

- null-check

This debug command performs API calls with NULL parameter instead of valid pointers to check that

APIs check against such wrong functions usage.

- wrong-config

This debug command tries to set unvalid values to the configuration to make sure that the library API has

ability to verify if configuration is valid before applying it.

- expire

This debug command forces login token to expire to make sure that application is capable of handling

such situation when it appears for real.

The shell prompt shall show the current directory which is being browsed. E.g: Genres/Blues>

vTuner API reference implementation SRS

RigiSystems AG 20

7 Test procedure

To test the ported vTuner library for its functionality the following tests must be passed:

7.1 Login procedure

Purpose:

Test login procedure as described in the vTuner specification in chapter 1 and 2.

Test tool:

Test application in debug mode.

Test description:

The login command is used to login to 2 different vTuner login sets and to do repeated logins test.

As soon as application starts type av 1 (To see “login successful” or “login failed” messages)

a) company.vtuner.com with correct blowfish key set

b) company.vtuner.com with incorrect blowfish key set

a. Blowfish key is wrong (you can set corrupted blowfish key by using break-key 1

command. You can set valid key by using break-key 0 command)

b. Initial vector is wrong(you can set corrupted blowfish iv by using break-iv 1

command. You can set valid iv by using break-iv 0 command)

c) multiple repeated login retries

The different login sets are only available in the application when built in debug configuration.

Appropriate messages shall be printed out in debug mode, to clearly check the internal success or correct

failure in case b).

Test result:

In case a), the login process must be followed correct and the root directory is presented. In case b, the

process must fail at some point. But it must be possible afterwards to login again with condition a),

without restarting the program.

In case c), every successive login attempt should result in receiving root directory structure xml.

7.2 Browse Directories and Previous item

Purpose:

vTuner API reference implementation SRS

RigiSystems AG 21

Test the properly linked structure by browsing into directories and backwards. Reference in vTuner

specification: Type 1 XML and Type 3 XML (Page 8 and 11) .

Test tool:

Test application in debug mode.

Test description:

After login to the test environment of vTuner, the root directory is displayed. The tester now browses into

each directory down to the very bottom and up again. It must be possible to return to the root directory by

pressing ‘<’ few times.

Test result:

No irregularities in browsing should be observed. Check the reference directory structure at the appendix.

7.3 Browse Items

Purpose:

This test is to confirm that all the items offered by vTuner XML are parsed correctly, and the information

can be accessed through the API access functions.

Test tool:

Test application in debug mode.

Test description:

Browse the directory to find all kind of items. Browse each of them, to see that all the data is properly

shown on the shell.

Test result:

Check the respective chapter in the vTuner specification:

7.3.1 Stations

Described as Type 2 XML on page 9

7.3.2 Show on Demand

Described as Type 4 XML on page 12

vTuner API reference implementation SRS

RigiSystems AG 22

7.3.3 Show Episode

Described as Type 5 XML on page 14

7.3.4 Display Item

Described as Type 6 XML on page 16

Browse to Root/Test/Test Display directory. Make sure that list of 7 items displayed. Example:

 DisplayText: 1

 DisplayText: 2

 DisplayText: 3

 DisplayText: 4

 DisplayText: 5

 DisplayText: 6

 DisplayText: 7

7.3.5 Search item

Described as Type 7 XML on page 17

7.3.6 Weather

Described as Type 8 XML on page 19

7.3.7 RSS Feeds

Described as Type 9 XML on page 20

7.4 Bookmark

Purpose:

This test is to confirm that bookmarking operates as described on page 15.

Test tool:

Test application in debug mode.

Test description:

a) Browse to any station. Bookmark it (by using bookmark command). Browse to

Root/Favorites/My Favorites and find bookmarked station. Press right key.

b) Browse to Root/Favorites/My Favorites folder and select previously bookmarked station. Delete

station from Favorites (by using bookmark command again)

vTuner API reference implementation SRS

RigiSystems AG 23

Test result:

Bookmarked station appears in the Favourites directory and is selectable (i.e. pressing right key when it is

selected leads some information about the station)..

7.5 Paging

Purpose:

This test is used to check whether the paging works ok under all circumstances. Background paging,

scrolling over the list break (from last item to first item, and from first item to last item) etc.

Test tool:

Test application in debug mode.

Test description:

Browse to Root/Test/Test No Paging directory with long list.

a) Browse over the last item and through the whole list again few times in circles.

b) Browse up from first item and through the whole list in that direction few times in circles.

c) Execute lv 1 command. Reopen the Root/Test/Test No Paging directory. Type ls command –

make sure background task doesn’t load pages on the background.

d) Execute lv 1 command. Browse to Root/Test/Test Local US directory (it has many items in

there). Type ls command – observer background task adding pages to the tree.

Test result:

a) Directory correctly displayed thru all items properly wrapping around first and last items.

b) Directory correctly displayed thru all items properly wrapping around first and last items.

c) Background paging task does not add items because they all should be loaded on the first browse

attempt.

d) Background paging task properly adds items to the list as they are being received from vTuner

server.

7.6 Cache

Purpose:

This test is used to check if caching works and cache is being used instead of making http requests when

user hits back button (left key in test application)

Test tool:

Test application

Test description:

vTuner API reference implementation SRS

RigiSystems AG 24

a) Browse to Root/Test/Test No-Cache directory. Interrupt network connection (unplug the cable,

for instance). Hit back button.

b) Browse to Root/Tests/Test No-Cache/Directory1 directory. Interrupt network connection (unplug

the cable, for instance). Hit back button.

Test result:

a) Application should load cached data and display right contents even though there is no active

connection to vTuner server.

b) Application shows the folder of “New Stations”, as this is entered as PreviousURL, which is

being taken for going back when the NoCache flag is set.

7.7 Wrong parameters in calls to API functions

Purpose:

This test is used to check if API functions check input parameters pointers against NULL and if APIs can

handle correctly wrong parameters in config structure.

Test tool:

Test application in debug mode

Test description:

a) Type in null-check command to run the test and hit enter key.

b) Type in wrong-config command to run the test and hit enter key.

Test result:

In both cases if application doesn’t crash and user sees “Test completed” output – test is passed. (even

though it might print bunch of errors in between)

7.8 Backup server URL operation

Purpose:

This test is used to check if library correctly uses backup url when primary server is not available.

Test tool:

Test application.

Test description:

Browse to the Root/Test/Test Timeout directory.

Test result:

vTuner API reference implementation SRS

RigiSystems AG 25

Application should wait approximately 60 seconds(because primary url is erroneous) and then request

data from backup URL. At last request from backup URL should succeed and user should see items in the

folder.

7.9 Token expiration

Purpose:

This test is used to check if library correctly re-logins and obtains new token when currently used token

expires.

This test was taken out, as vTuner doesn’t make use of that feature yet.

7.10 Languages support

Purpose:

This test is used to check if library correctly supports various languages.

Test tool:

Test application.

Test description:

Login to the vTuner server. Select language by executing lang command (example: lang dan).

Observe the root folder items. Repeat with other languages until all languages are tested.

Below is the list of supported language codes:

dan, dut, eng, fin, fre, ger, ita, jpn, nor, por, rus, spa, swe, chi, chs, pol, tur, kor

Test result:

All languages should be displayed correctly.

NOTE: The test site (company.vtuner.com) only supports English. This test command therefore can only

be used for your own customized vTuner-site.

7.11 Exhaustive browsing

Purpose:

This test is used to check whether library has memory leaks or some programming logic errors.

Test tool:

Test application.

Test description:

vTuner API reference implementation SRS

RigiSystems AG 26

execute the command “browsetest” on a certain directory. All items will be visited recursively.

Test result:

Test should run without error notices.

7.12 Memory usage control

Purpose:

This test is to track down memory usage, as well as possible memory leaks.

Test tool:

Test application in debug configuration

Test description:

This test requires that vTuner_malloc() and vTuner_free() log all the memory consumption and provide

further information about its usage. (See Chapter 8). The command mtrack is used to print the current

state about the memory consumption.

Login to vTuner server. Execute mtrack command. Remember corrunet memory consumption value.

Browse various folder for a while. Relogin. Execute mtrack command.

Test result:

Memory consumption value from first and second execution of mtrack command should be the same.

7.13 Search test

Purpose:

This test should be used to test searching functionality.

Test tool:

Test application.

Test description:

Login to vTuner server. Browse to Root/Test/Test search folder. Execute search bone command.

Test result:

vTuner API reference implementation SRS

RigiSystems AG 27

Test should find few stations or show on demand folders containing word “bone” in it. Make sure search

doesn’t return falsely found stations (those that do not contain searched word).

7.14 Test Expire

This is additional folder for the Tests that will be described later.

7.15 Test Domain

Purpose:

This test should be used to test if library implementation is domain-independent.

Test tool:

Test application.

Test description:

Login to vTuner server. Browse to Root/Test/Test Domain folder.

Test result:

Tester should see DisplayText: Success item inside the Test Domain folder.

7.16 Test Path

Purpose:

This test should be used to test if library implementation is path-independent (it doesn’t rely on

information where on the server vTuner script is running).

Test tool:

Test application.

Test description:

Login to vTuner server. Browse to Root/Test/Test Path folder.

Test result:

vTuner API reference implementation SRS

RigiSystems AG 28

Tester should see DisplayText: Success item inside the Test Path folder.

7.17 Test Local US

This is additional folder for the Tests that will be described later.

7.18 URL Length Test

Purpose:

This test should verify that vTuner library has enough memory allocated for long URLs.

Test tool:

Test application.

Test description:

Browse to Root/Test/Test URL length folder.

Test result:

Tester should see DisplayText: Success item (as opposed to crashing application).

7.19 No Data Returned Test

Purpose:

This test should verify that vTuner library properly handles situation when for any reason there is no data

returned.

Test tool:

Test application.

Test description:

Browse to Root/Test/ Test No data returned folder. After that browse to any other folder or station.

Test result:

Application should fail to enter Test No Data folder, but consequent browsing to other normal folders

should succeed.

vTuner API reference implementation SRS

RigiSystems AG 29

8 Memory tracking tool

8.1 Changes to vTuner_malloc / vTuner_free()

To track down the memory consumption and possible memory leaks, each allocation and free must be

tracked and stored in a separate list. This list then can be checked and printed to see the current memory

situation.

The following chained list is to be used to track the debugging information:

#ifdef _DEBUG

struct memory_note{

 memory_note* pNext;

 void* p;

 uint16 iSize;

};

memory_note* memory_note_head;

#endif

vTuner_port.h must be changed the following way:

#ifdef _DEBUG

#define vTuner_malloc(x) vTuner_debug_malloc((x))

#define vTuner_free(x) vTuner_debug_free(x);x=0

#else

#define vTuner_malloc(x) malloc((x))

#define vTuner_free(x) free(x);x=0

#endif

The vTuner_debug_malloc() then performs an additional malloc with the size of a

memory_note structure, within the size and the pointer of the original malloc is stored.

The vTuner_debug_free(), deletes such an entry, also freeing the memory_note itself J .

The shell function mtrack() needs to be implemented to print a summary of the memory consumption:

vTuner API reference implementation SRS

RigiSystems AG 30

Example of the table:

Pointer Size[byte]

1 0x34bd56ac 124

2 0x01234567 2024

current mem usage: 2148

max mem usage: 2848

The command mtrack [nr] can be used to binary dump the respective memory block. This might help

to find the caller for that block.

vTuner API reference implementation SRS

RigiSystems AG 31

9 Appendix

9.1 vTuner directory structure of test environment

root

 + Favorites

 + Location

 + Genre

 + New Stations

 + Most Popular Stations

 + Podcasts By Genre

 + Podcasts By Location

 + Weather 10011 Postal Code Sample

 + Yahoo RSS Feed

 + Test

 | + Test URL Length

 | + Test Timeout

 | + Test No data returned

 | + Test Expire

 | + Test Domain

 | + Test Path

 | + Test No-Cache

 | + Test Display

 | + Test Search

 | + Test No Paging

 | + Test Local US

 + DisplayText: Time 7/24/2008 4:56:40 AM

 + DisplayText: Your ID# is 00080294102B

